References of Epigenetic and Food Allergy

Allergies and asthma as The Chronic disease, are the result of complex gene-environment interactions. One of the most challenging questions in this regard relates to the biochemical mechanism of how exogenous environmental trigger factors modulate and modify gene expression, subsequently leading to the development of chronic inflammatory conditions. Epigenetics comprises the umbrella of biochemical reactions and mechanisms, such as DNA methylation and chromatin modifications on histones and other structures. Recently, several lifestyle and environmental factors have been investigated in terms of such biochemical interactions with the gene expression–regulating machinery: allergens; microbes and microbial compounds; dietary factors, including vitamin B12, folic acid, and fish oil; obesity; and stress.

image

References

* Ege, M.J., Strachan, D.P., Cookson, W.O., Moffatt, M.F., Gut, I., Lathrop, M. et al. Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J Allergy Clin Immunol. 2011; 127: 138–144.
* von Mutius, E. The influence of birth order on the expression of atopy in families: a gene-environment interaction?. Clin Exp Allergy. 1998; 28: 1454–1456
* Liu, J., Zhang, L., Winterroth, L.C., Garcia, M., Weiman, S., Wong, J.W. et al. Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol.2013; 2013: 967029
* Domann, F.E. and Futscher, B.W. Flipping the epigenetic switch. Am J Pathol. 2004; 164: 1883–1886
* Zardo, G., Fazi, F., Travaglini, L., and Nervi, C. Dynamic and reversibility of heterochromatic gene silencing in human disease. Cell Res. 2005; 15: 679–690
* Holliday, R. DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci. 1990; 326:329–338View in Article | CrossRef | PubMed
* Perera, F., Tang, W., Herbstman, J., Tang, D., Levin, L., Miller, R. et al. Relation of DNA methylation of 5′-CpG Island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma.PLoS One. 2009; 4: e4488View in Article | CrossRef | PubMed | Scopus (184)
* Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y., Tachibana, M. et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem. 2003; 278:24132–24138View in Article | CrossRef | PubMed | Scopus (176)
* Kehrmann, J., Tatura, R., Zeschnigk, M., Probst-Kepper, M., Geffers, R., Steinmann, J. et al. Impact of 5-aza-2′-deoxycytidine and epigallocatechin-3-gallate for induction of human regulatory T cells. Immunology. 2014; 142: 384–395View in Article | CrossRef | PubMed | Scopus (5)
* He, X., He, X., Dave, V.P., Zhang, Y., Hua, X., Nicolas, E. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment.Nature. 2005; 433: 826–833View in Article | CrossRef | PubMed | Scopus (217)
* Onodera, A., Yamashita, M., Endo, Y., Kuwahara, M., Tofukuji, S., Hosokawa, H. et al. STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. J Exp Med. 2010; 207: 2493–2506View in Article | CrossRef | PubMed | Scopus (44)
* Liu, J., Ballaney, M., Al-alem, U., Quan, C., Jin, X., Perera, F. et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci. 2008; 102: 76–81View in Article | CrossRef | PubMed | Scopus (116)
* Cheng, R.Y., Shang, Y., Limjunyawong, N., Dao, T., Das, S., Rabold, R. et al. Alterations of the lung methylome in allergic airway hyper-responsiveness. Environ Mol Mutagen. 2014; 55: 244–255View in Article | CrossRef | PubMed | Scopus (6)
* Cox, R. Studies on DNA methyltransferase and alteration of the enzyme activity by chemical carcinogens.Toxicol Pathol. 1986; 14: 477–482View in Article | CrossRef | PubMed
* Gaudet, F., Talbot, D., Leonhardt, H., and Jaenisch, R. A short DNA methyltransferase isoform restores methylation in vivo. J Biol Chem. 1998; 273: 32725–32729View in Article | CrossRef | PubMed | Scopus (41)
* Bachman, K.E., Rountree, M.R., and Baylin, S.B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem. 2001; 276: 32282–32287View in Article | CrossRef | PubMed | Scopus (293)
* Hsieh, C.L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol.1999; 19: 8211–8218View in Article | CrossRef | PubMed
* Verma, M., Chattopadhyay, B.D., Kumar, S., Kumar, K., and Verma, D. DNA methyltransferase 1(DNMT1) induced the expression of suppressors of cytokine signaling3 (Socs3) in a mouse model of asthma. Mol Biol Rep. 2014;41: 4413–4424View in Article | CrossRef | PubMed | Scopus (2)
* Kim, Y., Kim, K., Park, D., Lee, E., Lee, H., Lee, Y. et al.DNA methyl transferase I acts as a negative regulator of allergic skin inflammation. Mol Immunol. 2013; 53: 1–14View in Article | CrossRef | PubMed | Scopus (7)
* Zhang, X., Ulm, A., Somineni, H.K., Oh, S., Weirauch, M.T., Zhang, H. et al. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin. 2014; 7: 21View in Article | CrossRef | PubMed
* Yu, Q., Zhou, B., Zhang, Y., Nguyen, E.T., Du, J., Glosson, N.L. et al. DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A. 2012; 109: 541–546View in Article | CrossRef | PubMed | Scopus (18)
* Bannister, A.J. and Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21:381–395View in Article | CrossRef | PubMed | Scopus (754)
* Zentner, G.E. and Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013; 20: 259–266View in Article | CrossRef | PubMed | Scopus (197)
* Seuter, S., Heikkinen, S., and Carlberg, C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1 ,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res. 2012; 41: 110–124View in Article | CrossRef | PubMed | Scopus (19)
* Akbarian, S. and Huang, H. Epigenetic regulation in human brain—focus on histone lysine methylation. Biol Psychiatry. 2009; 65: 198–203View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (118)
* Chaturvedi, P., Kalani, A., Givvimani, S., Kamat, P., Familtseva, A., and Tyagi, S.C. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: an epigenetic mechanism. Physiol Genomics. 2014; 46: 245–255View in Article | CrossRef | PubMed | Scopus (9)
* Maksimoska, J., Segura-Peña, D., Cole, P.A., and Marmorstein, R. Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues. Biochemistry. 2014; 53: 3415–3422View in Article | CrossRef | PubMed | Scopus (3)
* Richman, R., Chicoine, L.G., Collini, M.P., Cook, R.G., and Allis, C.D. Micronuclei and the cytoplasm of growingTetrahymena contain a histone acetylase activity which is highly specific for free histone H4. J Cell Biol. 1988; 106:1017–1026View in Article | CrossRef | PubMed
* Benard, A., Goossens-Beumer, I.J., van Hoesel, A.Q., de Graaf, W., Horati, H., Putter, H. et al. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer. 2014; 14: 531View in Article | CrossRef | PubMed | Scopus (6)
* Snowden, A.W., Gregory, P.D., Case, C.C., and Pabo, C.O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 2002;12: 2159–2166View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (111)
* Healy, S., Khan, P., He, S., and Davie, J.R. Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective.Biochem Cell Biol. 2012; 90: 39–54View in Article | PubMed
* Sawicka, A. and Seiser, C. Histone H3 phosphorylation—a versatile chromatin modification for different occasions. Biochimie. 2012; 94: 2193–2201View in Article | CrossRef | PubMed | Scopus (48)
* Rui, J., Liu, H., Zhu, X., Cui, Y., and Liu, X. Epigenetic Silencing of Cd8 Genes by ThPOK-Mediated Deacetylation during CD4 T Cell Differentiation. J Immunol. 2012; 189:1380–1390View in Article | CrossRef | PubMed | Scopus (17)
* Han, S., Lu, J., Zhang, Y., Cheng, C., Han, L., Wang, X. et al. Recruitment of histone deacetylase 4 by transcription factors represses interleukin-5 transcription. Biochem J.2006; 400: 439–448View in Article | CrossRef | PubMed | Scopus (28)
* Thomas, L.R., Miyashita, H., Cobb, R.M., Pierce, S., Tachibana, M., Hobeika, E. et al. Functional analysis of histone methyltransferase g9a in B and T lymphocytes. J Immunol. 2008; 181: 485–493View in Article | CrossRef | PubMed
* Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A., and Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol. 2005;175: 5–14View in Article | PubMed
* White, G.P., Watt, P.M., Holt, B.J., and Holt, P.G.Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol. 2002; 168: 2820–2827View in Article | CrossRef | PubMed
* Fujimaki, W., Takahashi, N., Ohnuma, K., Nagatsu, M., Kurosawa, H., Yoshida, S. et al. Comparative study of regulatory T Cell function of human CD25+CD4+ T cells from thymocytes, cord blood, and adult peripheral blood.Clin Dev Immunol. 2008; 2008: 1–12View in Article | CrossRef | Scopus (25)
* Schaub, B., Liu, J., Schleich, I., Höppler, S., Sattler, C., and von Mutius, E. Impairment of T helper and T regulatory cell responses at birth. Allergy. 2008; 63: 1438–1447View in Article | CrossRef | PubMed | Scopus (53)
* Fields, P.E., Kim, S.T., and Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J Immunol. 2002;169: 647–650View in Article | CrossRef | PubMed
* Makar, K.W. and Wilson, C.B. DNA methylation is a nonredundant repressor of the Th2 effector program. J Immunol. 2004; 173: 4402–4406View in Article | CrossRef | PubMed
* Singh, S.P., de Camargo, M.M., Zhang, H.H., Foley, J.F., Hedrick, M.N., and Farber, J.M. Changes in histone acetylation and methylation that are important for persistent but not transient expression of CCR4 in human CD4+ T cells. Eur J Immunol. 2010; 40: 3183–3197View in Article | CrossRef | PubMed | Scopus (1)
* Zheng, W., Zhao, Q., Zhao, X., Li, B., Hubank, M., Schatz, D.G. et al. Up-regulation of Hlx in immature Th cells induces IFN-gamma expression. J Immunol. 2004; 172:114–122View in Article | CrossRef | PubMed
* Saraiva, M., Christensen, J.R., Tsytsykova, A.V., Goldfeld, A.E., Ley, S.C., Kioussis, D. et al. Identification of a macrophage-specific chromatin signature in the IL-10 locus. J Immunol. 2005; 175: 1041–1046View in Article | CrossRef | PubMed
* Brand, S., Kesper, D.A., Teich, R., Kilic-Niebergall, E., Pinkenburg, O., Bothur, E. et al. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol.2012; 129: 1602–1610.e6View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (35)
* Pascual, M., Suzuki, M., Isidoro-Garcia, M., Padrón, J., Turner, T., Lorente, F. et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics. 2011; 6: 1131–1137View in Article | CrossRef | PubMed
* Shang, Y., Das, S., Rabold, R., Sham, J.S., Mitzner, W., and Tang, W. Epigenetic alterations by DNA methylation in house dust mite-induced airway hyperresponsiveness.Am J Respir Cell Mol Biol. 2013; 49: 279–287View in Article | CrossRef | PubMed | Scopus (7)
* Braun-Fahrlander, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002; 347: 869–877View in Article | CrossRef | PubMed | Scopus (1131)
* Schaub, B., Liu, J., Höppler, S., Schleich, I., Huehn, J., Olek, S. et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol. 2009; 123: 774–782.e5View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (189)
* Michel, S., Busato, F., Genuneit, J., Pekkanen, J., Dalphin, J., Riedler, J. et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy. 2013; 68:355–364View in Article | CrossRef | PubMed | Scopus (37)
* Schieck, M., Sharma, V., Michel, S., Toncheva, A.A., Worth, L., Potaczek, D.P. et al. A polymorphism in the T H 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy. 2014; 69: 1171–1180View in Article | CrossRef | PubMed | Scopus (4)
* Lluis, A., Depner, M., Gaugler, B., Saas, P., Casaca, V.I., Raedler, D. et al. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014; 133: 551–559.e10View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (31)
* Slaats, G.G., Reinius, L.E., Alm, J., Kere, J., Scheynius, A., and Joerink, M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy. 2012; 67: 895–903View in Article | CrossRef | PubMed | Scopus (18)
* Brand, S., Teich, R., Dicke, T., Harb, H., Yildirim, A.Ö, Tost, J. et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011; 128:618–625.e7View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (74)
* Molina-Martínez, L.M., González-Espinosa, C., and Cruz, S.L. Dissociation of immunosuppressive and nociceptive effects of fentanyl, but not morphine, after repeated administration in mice: fentanyl-induced sensitization to LPS. Brain Behav Immun. 2014; ([Epub ahead of print])View in Article | PubMed
* Blumer, N., Herz, U., Wegmann, M., and Renz, H.Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy. 2005; 35: 397–402View in Article | CrossRef | PubMed | Scopus (115)
* Foster, S.L., Hargreaves, D.C., and Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007; 447: 972–978View in Article | PubMedThomson, N.C. The role of environmental tobacco smoke in the origins and progression of asthma. Curr Allergy Asthma Rep. 2007; 7: 303–309View in Article | CrossRef | PubMed | Scopus (27)
* Klingbeil, E.C., Hew, K.M., Nygaard, U.C., and Nadeau, K.C. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma. Immunol Res. 2014;58: 369–373View in Article | CrossRef | PubMed | Scopus (5)
* Adcock, I.M., Ito, K., and Barnes, P.J. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD. 2005; 2: 445–455View in Article | CrossRef | PubMed | Scopus (75)
* Adcock, I.M., Tsaprouni, L., Bhavsar, P., and Ito, K.Epigenetic regulation of airway inflammation. Curr Opin Immunol. 2007; 19: 694–700View in Article | CrossRef | PubMed | Scopus (126)
* Ito, K., Lim, S., Caramori, G., Chung, K.F., Barnes, P.J., and Adcock, I.M. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001; 15: 1110–1112View in Article | PubMed
* Liu, F., Killian, J.K., Yang, M., Walker, R.L., Hong, J.A., Zhang, M. et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010; 29: 3650–3664View in Article | CrossRef | PubMed | Scopus (121)
* Kohli, A., Garcia, M.A., Miller, R.L., Maher, C., Humblet, O., Hammond, S. et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increased CpG methylation and decreased expression of IFN-γ in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenetics. 2012; 4: 17View in Article | CrossRef | PubMed
* Suter, M., Abramovici, A., Showalter, L., Hu, M., Shope, C.D., Varner, M. et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression.Metabolism. 2010; 59: 1481–1490View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (73)
* Engel, L.S., Taioli, E., Pfeiffer, R., Garcia-Closas, M., Marcus, P.M., Lan, Q. et al. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol. 2002; 156: 95–109View in Article | CrossRef | PubMed | Scopus (176)
* Wilhelm-Benartzi, C.S., Houseman, E.A., Maccani, M.A., Poage, G.M., Koestler, D.C., Langevin, S.M. et al. in utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2011; 120: 296–302View in Article | CrossRef | PubMed | Scopus (64)
* Breton, C.V., Salam, M.T., and Gilliland, F.D. Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics. 2011; 6: 895–898View in Article | CrossRef | PubMed | Scopus (24)
* Sharma, S. and Litonjua, A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol. 2014; 133: 1246–1254View in Article | Abstract | Full Text | Full Text PDF | PubMed | Scopus (10)
* Wan, E.S., Qiu, W., Baccarelli, A., Carey, V.J., Bacherman, H., Rennard, S.I. et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome.Hum Mol Genet. 2012; 21: 3073–3082View in Article | CrossRef | PubMed | Scopus (83)
* Kim, S.V., Xiang, W.V., Kwak, C., Yang, Y., Lin, X.W., Ota, M. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science. 2013;340: 1456–1459View in Article | CrossRef | PubMed | Scopus (50)
* Yao, H. and Rahman, I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol. 2012; 303: L557View in Article | CrossRef | PubMed | Scopus (35)
* Word, B., Lyn-Cook, L.E., Mwamba, B., Wang, H., Lyn-Cook, B., and Hammons, G. Cigarette smoke condensate induces differential expression and promoter methylation profiles of critical genes involved in lung cancer in NL-20 lung cells in vitro: short-term and chronic exposure. Int J Toxicol. 2013; 32: 23–31View in Article | CrossRef | PubMed | Scopus (10)
* Osoata, G.O., Yamamura, S., Ito, M., Vuppusetty, C., Adcock, I.M., Barnes, P.J. et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009; 384:366–371View in Article | CrossRef | PubMed | Scopus (67)
* Adenuga, D., Yao, H., March, T.H., Seagrave, J., and Rahman, I. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol. 2009; 40: 464–473View in Article | CrossRef | PubMed | Scopus (99)
* Shorter, K.R., Anderson, V., Cakora, P., Owen, A., Lo, K., Crossland, J. et al. Pleiotropic effects of a methyl donor diet in a novel animal model. PLoS One. 2014; 9: e104942View in Article | CrossRef | PubMed | Scopus (3)
* Dolinoy, D.C. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008; 66: S7View in Article | CrossRef | PubMed | Scopus (62)
* Barua, S., Kuizon, S., and Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci. 2014; 21: 77View in Article | CrossRef | PubMed | Scopus (7)
* Denny, K.J., Jeanes, A., Fathe, K., Finnell, R.H., Taylor, S.M., and Woodruff, T.M. Neural tube defects, folate, and immune modulation. Birth Defects Res A Clin Mol Teratol.2013; 97: 602–609View in Article | CrossRef | PubMed | Scopus (7)
* Imbard, A., Benoist, J., and Blom, H. Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 2013; 10: 4352–4389View in Article | CrossRef | PubMed | Scopus (14)
* Hollingsworth, J.W., Maruoka, S., Boon, K., Garantziotis, S., Li, Z., Tomfohr, J. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008; 118: 3462–3469View in Article | PubMed
* Amarasekera, M., Martino, D., Ashley, S., Harb, H., Kesper, D., Strickland, D. et al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J. 2014; ([Epub ahead of print])View in Article | PubMedPrescott, S.L. and Clifton, V. Asthma and pregnancy: emerging evidence of epigenetic interactions in utero.Curr Opin Allergy Clin Immunol. 2009; 9: 417–426View in Article | CrossRef | PubMed | Scopus (88)
* Mackay, D.J.G., Callaway, J.L.A., Marks, S.M., White, H.E., Acerini, C.L., Boonen, S.E. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57.Nat Genet. 2008; 40: 949–951View in Article | CrossRef | PubMed | Scopus (238)
* Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2014; ([Epub ahead of print])View in Article | PubMed
* Fischer, R., Konkel, A., Mehling, H., Blossey, K., Gapelyuk, A., Wessel, N. et al. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res. 2014; 55: 1150–1164View in Article | CrossRef | PubMed | Scopus (27)
* Notenboom, M.L., Mommers, M., Jansen, E.H.J.M., Penders, J., and Thijs, C. Maternal fatty acid status in pregnancy and childhood atopic manifestations: KOALA Birth Cohort Study. Clin Exp Allergy. 2011; 41: 407–416View in Article | CrossRef | PubMed | Scopus (25)
* Willers, S.M., Wijga, A.H., Brunekreef, B., Kerkhof, M., Gerritsen, J., Hoekstra, M.O. et al. Maternal food consumption during pregnancy and the longitudinal development of childhood asthma. Am J Respir Crit Care Med. 2008; 178: 124–131View in Article | CrossRef | PubMed | Scopus (68)
* Kull, I., Bergström, A., Lilja, G., Pershagen, G., and Wickman, M. Fish consumption during the first year of life and development of allergic diseases during childhood.Allergy. 2006; 61: 1009–101
* Xue, B., Yang, Z., Wang, X., Shi, H., and Xu, H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway.PLoS One. 2012; 7: e45990
* Jing, H., Yao, J., Liu, X., Fan, H., Zhang, F., Li, Z. et al.Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia–reperfusion through Adenosine 5′-monophosphate-activated protein kinase–sirtuin1 pathway. J Surg Res. 2014; 187: 252–261
* Yang, L., Chen, S., Yuan, G., Zhou, L., Wang, D., Wang, X. et al. Association of serum adipose triglyceride lipase levels with obesity and diabetes. Genet Mol Res. 2014; 13:6746–6751
* Rouse, R., Zhang, L., Shea, K., Zhou, H., Xu, L., Stewart, S. et al. Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet. PLoS One. 2014; 9:e109477
* Cummins, T.D., Holden, C.R., Sansbury, B.E., Gibb, A.A., Shah, J., Zafar, N. et al. Metabolic remodeling of white adipose tissue in obesity. Am J Physiol Endocrinol Metab.2014; 307: E262
* Nilsson, E., Jansson, P.A., Perfilyev, A., Volkov, P., Pedersen, M., Svensson, M.K. et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63: 2962–2976
* Su, S., Zhu, H., Xu, X., Wang, X., Dong, Y., Kapuku, G. et al. DNA methylation of the LY86 gene is associated with obesity, insulin resistance, and inflammation. Twin Res Hum Genet. 2014; 17: 183–191
* Dietze, J., Böcking, C., Heverhagen, J.T., Voelker, M.N., and Renz, H. Obesity lowers the threshold of allergic sensitization and augments airway eosinophilia in a mouse model of asthma. Allergy. 2012; 67: 1519–1529
* Ciprandi, G., Schiavetti, I., Bellezza Fontana, R., Sorbello, V., and Ricciardolo, F.L.M. Overweight and obesity as risk factors for impaired lung function in patients with asthma: a real-life experience. Allergy Asthma Proc. 2014; 35: 62–71
* Rastogi, D., Suzuki, M., and Greally, J.M. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep. 2013; 3: 64
* Wright, R.J., Rodriguez, M., and Cohen, S. Review of psychosocial stress and asthma: an integrated biopsychosocial approach. Thorax. 1998; 53: 1066–1074
* Chen, W., Boutaoui, N., Brehm, J.M., Han, Y., Schmitz, C., Cressley, A. et al. ADCYAP1R1 and Asthma in Puerto Rican Children. Am J Respir Crit Care Med. 2013; 187:584–588
* Weaver, I.C.G., Szyf, M., and Meaney, M.J. From maternal care to gene expression: DNA methylation and the maternal programming

Iklan

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s